
A Kibana Tutorial: Getting Started
By: Daniel Berman

#Note: Elastic recently announced it would implement closed-source licensing for new

versions of Elasticsearch and Kibana beyond Version 7.9. For more details, read our

CEO Tomer Levy’s comments on Truly Doubling Down on Open Source.

Kibana is the visualization layer of the ELK Stack—the world’s most popular log analysis

platform which is comprised of Elasticsearch, Logstash, and Kibana.

More on the subject:

 Configuring YAML Files after Installing the ELK Stack
 Logging Kubernetes on GKE with the ELK Stack and Logz.io
 The Importance of Security in IoT

This tutorial will guide you through some of the basic steps for getting started with

Kibana—installing Kibana, defining your first index pattern, and running some basic

searches. We’ll also compare Kibana with OpenSearch Dashboards, the new forked

version of Kibana launched by AWS after Elastic decided to close source Elasticsearch and

Kibana in early 2021.

This tutorial is for anyone curious to install Kibana on their own. It assumes you’ve

already got the database (Elasticsearch) and parsing tool (Logstash) configured and ready

to go.

Need help installing Elasticsearch? Check out this Elasticsearch tutorial. If you haven’t

installed Logstash yet, or are not familiar with how to use it, check out this Logstash tutorial.

https://logz.io/author/danielberman/
https://logz.io/blog/open-source-elasticsearch-doubling-down/
https://logz.io/learn/complete-guide-elk-stack/
https://logz.io/blog/elasticsearch-tutorial/
https://logz.io/blog/logstash-tutorial/
https://logz.io/blog/configure-yaml-files-elk-stack/
https://logz.io/blog/kubernetes-gke-elk/
https://logz.io/blog/the-importance-of-security-in-iot/
https://logz.io/blog/open-source-elasticsearch-doubling-down/
https://logz.io/blog/open-source-elasticsearch-doubling-down/
https://logz.io/blog/elasticsearch-tutorial/
https://logz.io/blog/logstash-tutorial/

If you’d rather not spend the time or resources installing and managing your own ELK

Stack, Logz.io Log Management offers a fully managed service based on OpenSearch and

OpenSearch Dashboards, which provides log ingestion, parsing, storage, and analysis

dashboards out-of-the-box, at any scale.

Installing Kibana
Presuming you already have Elasticsearch installed and configured, we will start with

installing Kibana. If you want to find out more about installing Elasticsearch, check out

this Elasticsearch tutorial.

Depending on your operating system and your environment, there are various ways of

installing Kibana. We will be installing Kibana on an Ubuntu 16.04 machine running on

AWS EC2 on which Elasticsearch and Logstash are already installed.

Start by downloading and installing the Elastic public signing key:

wget -qO - https://artifacts.elastic.co/GPG-KEY-elasticsearch |
sudo apt-key
add -

Copy

Add the repository definition:

echo "deb https://artifacts.elastic.co/packages/7.x/apt stable
main" | sudo
tee -a /etc/apt/sources.list.d/elastic-7.x.list

Copy

It’s worth noting that there is another package containing only features available under the

Apache 2.0 license. To install this package, use:

echo "deb https://artifacts.elastic.co/packages/oss-7.x/apt stable
main" |
sudo tee -a /etc/apt/sources.list.d/elastic-7.x.list

Copy

All that’s left to do is to update your repositories and install Kibana:

sudo apt-get update
sudo apt-get install kibana

Copy

Open up the Kibana configuration file at: /etc/kibana/kibana.yml, and make sure you have

the following configurations defined:

server.port: 5601

elasticsearch.url: "http://localhost:9200"

Copy

These specific configurations tell Kibana which Elasticsearch to connect to and which

port to use.

Now, start Kibana with:

sudo service kibana start

Copy

https://logz.io/platform/log-management/

Open up Kibana in your browser with: http://<yourServerIP>:5601. You will be presented

with the Kibana home page.

Defining an index pattern

Your next step is to define a new index pattern, or in other words, tell Kibana what

Elasticsearch index to analyze. To do that you will of course need to have data indexed.

For the purpose of this tutorial, we’ve prepared some sample data containing Apache

access logs that is refreshed daily. You can download the data here: https://logz.io/sample-

data. Of course, you could send in your own logs .

Next, we will use Logstash to collect, parse and ship this data into Elasticsearch. If you

haven’t installed Logstash yet, or are not familiar with how to use it, check out

this Logstash tutorial.

Create a new Logstash configuration file at: /etc/logstash/conf.d/apache-01.conf:

sudo vim /etc/logstash/conf.d/apache-01.conf

Copy

Enter the following Logstash configuration (change the path to the file you downloaded

accordingly):

input {
 file {
 path => "/home/ubuntu/apache-daily-access.log"
 start_position => "beginning"
 sincedb_path => "/dev/null"
 }
}
filter {

 grok {
 match => { "message" => "%{COMBINEDAPACHELOG}" }
 }
 date {
 match => ["timestamp" , "dd/MMM/yyyy:HH:mm:ss Z"]
 }
 geoip {
 source => "clientip"
 }
}
output {
 elasticsearch {
 hosts => ["localhost:9200"]
 }
}

Copy

Start Logstash with:

sudo service logstash start

Copy

https://logz.io/sample-data
https://logz.io/sample-data
https://logz.io/blog/logstash-tutorial/

https://logz.io/wp-content/uploads/2019/06/create-index-pattern-1.png
https://dytvr9ot2sszz.cloudfront.net/wp-content/uploads/2019/06/index-pattern-2-1-e1617180449758.png

If all goes well, a new index will be created in Elasticsearch, the pattern of which can now

be defined in Kibana.

In Kibana, go to Management → Kibana Index Patterns, and Kibana will automatically

identify the new “logstash-*” index pattern.

Define it as “logstash-*”, and in the next step select @timestamp as your Time Filter field.

Hit Create index pattern, and you are ready to analyze the data. Go to the Discover tab

in Kibana to take a look at the data (look at today’s data instead of the default last 15

mins).

Using Kibana in Logz.io

If you’re using Logz.io, simply use this cURL command to upload the sample log data.

Logz.io listeners will parse the data using automatic parsing so there’s no need to

configure Logstash (the token can be found on the Settings page in the Logz.io UI, and the

type of the file is apache_access):

curl -T <Full path to file>
http://listener.logz.io:8021/file_upload/<Token>/apache_access

Copy

Kibana Searching

Kibana querying is an art unto itself, and there are various methods for performing

searches on your data. This section will describe some of the most common search

methods as well as some tips and best practices that should be memorized for optimized

user experience.

https://dytvr9ot2sszz.cloudfront.net/wp-content/uploads/2019/06/analyze-data-e1617523015409.png

KQL and Lucene

Up until version 6.2, the only way to query in Kibana was using Lucene syntax. Starting

in version 6.2, another query language was introduced called Kuery, or as it’s been called

now—KQL (Kibana Querying Language) to improve the searching experience.

Since version 7.0, KQL is the default language for querying in Kibana but you can revert

to Lucene if you like. For the basic example below, there will be little difference in the

search results.

Free-Text Search

Free text search works within all fields — including the _source field, which includes all

the other fields. If no specific field is indicated in the search, the search will be done on all

of the fields that are being analyzed.

In the search field at the top of the Discover page, run these searches and examine the

result (set the time parameter on the top right of the dashboard to the past month to

capture more data):

 category

 Category

 categ

 cat*

 categ?ry

 “category”

 category\/health

 “category/health”

 Chrome

 chorm*

Tips and gotchas

Not case sensitive

Text searches are not case sensitive. This means that category and CaTeGory will return

the same results. When you put the text within double quotes (“”), you are looking for an

exact match, which means that the exact string must match what is inside the double

quotes. This is why [category\/health] and [“category/health”] will return different results

Wildcard symbols and search

Kibana wildcard searches – you can use the wildcard symbols [*] or [?] in searches. [*]

means any number of characters, and [?] means only one character

Field-Level Searches

Another common search in Kibana is field-level queries, used for searching for data inside

specific fields. To use this type of search that, you need to use the following format:

<fieldname>:search

Copy

As before, run the following searches to see what you get (some will purposely return no

results):

 name:chrome

 name:Chrome

 name:Chr*

 response:200

 bytes:65

 bytes:[65 TO *]

 bytes:[65 TO 99]

 bytes:{65 TO 99}

 exists:name

Tips and gotchas

Field-type dependency

1. Field-level searches depend on the type of field. (Logz.io users – by default, none of

the fields are analyzed, which means that searches in Logz.io are case-sensitive

(unlike free-text search) and cannot use wildcard searches (again, unlike free-text

search). The reason we save all of the fields as “not analyzed” is in order to save

space in the index since the data is also duplicated in an analyzed field

called _source)

Searching a range

1. You can search a range within a field. If you use [], this means that the results are

inclusive. If you use {}, this means that the results are exclusive.

exists

1. Using the _exists_ prefix for a field will search the documents to see if the field exists

Capitalization and ranges

1. When using a range, you need to follow a very strict format and use capital letters TO

to specify the range

Logical Statements

You can use logical statements in searches in these ways:

 USA AND Firefox

 USA OR Firefox

 (USA AND Firefox) OR Windows

 -USA

 !USA

 +USA

 NOT USA

Tips and gotchas

1. You need to make sure that you use the proper format such as capital letters to define

logical terms like AND or OR

2. You can use parentheses to define complex, logical statements

3. You can use -,! and NOT to define negative terms

Kibana special characters

All special characters need to be properly escaped. The following is a list of all available

special characters:

+ – && || ! () { } [] ^ ” ~ * ? : \

Proximity searches

Proximity searches are an advanced feature of Kibana that takes advantage of the Lucene

query language.

[categovi~2] means a search for all the terms that are within two changes from [categovi].

This means that all category will be matched.

Tips and gotchas

Proximity searches use a lot of system resources and often trigger internal circuit breakers

in Elasticsearch. If you try something such as [catefujt~10], it is likely not to return any

results due to the amount of memory used to perform this specific search.

Kibana Autocomplete

To help improve the search experience in Kibana, the autocomplete feature suggests

search syntax as you enter your query. As you type, relevant fields are displayed and you

can complete the query with just a few clicks. This speeds up the whole process and

makes Kibana querying a whole lot simpler.

https://dytvr9ot2sszz.cloudfront.net/wp-content/uploads/2019/06/query-e1617523066134.png

Kibana Filtering

To assist users in searches, Kibana includes a filtering dialog that allows easier filtering of

the data displayed in the main view.

To use the dialog, simply click the Add a filter + button under the search box and begin

experimenting with the conditionals. Filters can be pinned to the Discover page, named

using custom labels, enabled/disabled and inverted.

Power users can also enter Elasticsearch queries using the Query DSL.

Thousands of engineers rely on Kibana’s search and visualization capabilities to

troubleshoot their environments.

For those who prefer Kibana, but also require more advanced log analysis capabilities –

such as anomaly detection, alerting, ML to automatically surface critical exceptions, and

correlation with metrics and traces – Logz.io Log Management may be the better option.

Logz.io adds these capabilities on top of OpenSearch Dashboards to accelerate log

analysis and troubleshooting.

https://logz.io/platform/log-management/
https://logz.io/wp-content/uploads/2019/06/discover2.png

Summary
This tutorial covered the basics of setting up and using Kibana and provided the steps for

setting up a test environment only. Tracking Apache access logs in production, for

example, is better done using Filebeat and the supplied Apache module. The sample data

provided can, of course, be replaced with other types of data, as you see fit. Kibana also

provides sets of sample data to play around with, including flight data and web logs.

If you have any suggestions on what else should be included in the first part of this Kibana

tutorial, please let me know in the comments below. The next Kibana tutorial will cover

visualizations and dashboards.

Enjoy!

https://logz.io/blog/kibana-tutorial-2/

